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1 INTRODUCTION 
Earthquakes may affect the fluid inventory co- and post-seismically inducing changes in water level in wells 

(Wang and Manga, 2010), in temperature (Mogi et al., 1989) and/or chemical composition of groundwaters 

(Skelton et al., 2014; Woith et al., 2003), in the flow-rate of gas discharges (Heinicke et al., 2006) and in 

their chemical and isotopic composition (Italiano et al., 2001, 2004, 2005, Hilton, 2007; Mutlu et al., 2012). 

Precursory changes have been proposed by many authors, but only few case studies made it into the 

IASPEI list of potential precursors. Among the very few “accepted” cases is one related to water level 

variations before the 1985 Kettleman Hills earthquake (Roeloffs and Quilty, 1997) and one related to radon 

variations before the 1978 Izu-Oshima-Kinkai earthquake (Wakita, 1981). Reviews on more recent 

hydrogeochemical presursors are provided by (Hartmann and Levy, 2005; Ingebritsen and Manga, 2014; 

Toutain and Baubron, 1999; Woith, 2015).   

The relationship between fluids and seismogenesis has been approached collecting geochemical data of 

local significance and evaluating them in geochemical interpretative models of fluid circulation within the 

crust (e.g. Italiano et al., 2001, 2004, 2005).  

As the fluids have high mobility migrating through fractures and faults and are fast carriers of information 

on the physico-chemical conditions at depth, they are able to reveal modifications in the equilibrium 

conditions at depth. Fluids may develop high pore pressures at depth capable to reduce the effective 

frictional strength of rocks; see (Sibson, 1992) for an in-depth discussion of fluid pressure cycles.  

Our methodological approach aims to understand the genesis of the fluids, the components, the mixing 

proportions among various end-member components, as well as the thermodynamic equilibrium 

conditions at depth.  

The geodynamic (geological setting, tectonics, seismicity) context of the area deeply influences the 

composition and the behavior of the fluids in terms of both chemical and isotopic composition as shallow-

originated fluids usually mix with fluids coming from different depth levels of the crust and/or from the 

upper mantle. Such fluid mixing may change with the time due to both, seasonal variations and 

seismogenic processes (stress accumulation, deformation, strain release). Within the main frame of 

MARSITE project we followed a monitoring strategy focussed on the evaluation of potential indicators of 

the development of seismo-genesis and its impact on the circulating fluids. The seismic activity recorded 

during the time interval of the project is mainly located on the different branches of the NAFZ. We 

extracted the events marked by M>4 to carry out a preliminary check on the influence of ruptures (Fig. 1) 

on the fluids behaviour. A model of fluids circulation and interactions with the strike-slip North Anatolian 

Fault is proposed. The model accounts for the geochemical features of the fluids collected and analyzed 

as well as for the information provided by the soil degassing and continuous monitoring activity. 

1.1 Seismicity 

The earthquake catalogue built up during the MARSite project combined the seismology stations run by 

four different institutions (KOERI, TUBITAK, KOU and GFZ) in one single data-base (MARSite Main Server 

located at KOERI). About 5500 earthquakes (0.5 ≤ ML ≤ 5.5) occurred between November 2012 and 

February 2016 (see plot on Figure 1).  

The highest seismicity rate has been recorded along the Main Marmara Fault (western segment of North 

Anatolian Fault in Marmara Sea). A significant seismic activity occurred over the fault segments located in 

southern Marmara sea (Gemlik Gulf, Manyas, Yenice, Gönen). The high number of earthquakes in Saroz 

Gulf (northwest of Çanakkale city) depicts the aftershock activity of 24 May 2014 North Aegean 

Earthquake (Mw=6.9) (Figure 1).  
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Figure 1 - Seismicity of the Marmara Region recorded by the MARsite seismological network. About 5500 
earthquakes occurred in the MARSite project period. 

 
We extracted the events marked by M>4 from the catalogue to check the positioning of the epicentral 
location with respect to the geochemical monitoring stations. Figure 2 plots together the selected events 
as well as the geochemical monitoring stations. The aim is to verify possible interactions of the occurred 
seismic shocks with the fluids expulsion and fluids behaviour. 

 
Figure 2 -Distribution of the epicenters for ML ≥ 4.0 earthquakes (red marks) recorded over in the Marmara area 
between 01.11.2012 and 29.02.2016. The location of the sampling sites is shown (white circles) as well as that of 
continuous groundwater monitoring stations (crossed circles).  

 



MARSite (GA 308417) D2.4 Report on interpretative models correlating gas, crustal deformation and seismic activity 

 

6 
 

The geochemical data presented in detail in D2.3 are hereafter discussed in terms of interactions with the 
faults and the faulting activity. The fluids/faults relationships can be well constrained by a deep 
investigation on the origin, interactions and temporal changes of the geochemical features of the fluids 
circulating over the different sectors of the NAFZ. 

1.2 Gas geochemistry 

The analytical results of the gases from 25 bubbling and 45 dissolved gases show that the gases released 

at the monitoring sites are a mixture of two end-members: one dominated by N2 and the other 

dominated by CO2. All the gases collected at the monitoring stations, including dissolved and bubbling 

samples plot along a mixing line between the two gases at different extents. Figure  plots the CO2-N2 

relationships due to two different, sometimes concomitants phenomena: mixing of fluids from the two 

different sources and Gas-Water-Interactions (GWI) leading to CO2 dissolution and virtual enrichment in 

the gas phase of the less soluble gas species. 

 

 
Figure 3 -  Diagram N2 vs. CO2 that  highlights the mixing at various extents between a CO2- and a N2-dominated 
gas phase. 
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Figure 4 - CH4-N2-CO2 ternary diagram for dissolved (above, green marks) and bubbling gases (below, blue dots). 

The arrows show the trends produced by the addition and dissolution of CO2 to an atmospheric gas assemblage as 

well as addition of CH4.  
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The CH4-N2-CO2 ternary diagram (Figure 4 - ) highlights the composition of the gases dissolved in the 

studied waters and released as free gas phase (bubbling gases). All of them are made of atmospheric-

derived gas species (N2) besides non-atmospheric gases (CO2. CH4). In both cases the graphs highlight the 

occurrence of CO2 dissolution due to Gas Water Interactions (GWI) and CO2 addition due to natural 

upraising of deep originated CO2-dominated volatiles. CH4 is present in significant concentration only at 

the northern shore of the Iznik Lake. 

 

1.2.1 Helium isotopes 

The isotopic composition of helium is always used to constrain the origin of a gas phase. The samples 

collected over the Marmara area underwent the analytical determination of the 3He/4He ratios. The 

helium isotopic data coupled with the chemical composition can provide a wide range of useful 

information to better understand the relationships of the circulating fluids with the different segments of 

the North Anatolian Fault Zone. 

The analytical results of both dissolved and bubbling gases are listed in tables 1 and 2, respectively. 

Besides the 4He/20Ne ratios and the isotopic composition of carbon (as total dissolved inorganic carbon in 

dissolved gases and carbon of CO2 in bubbling gases) display values in the range of 0.2-2.07 R/Ra (Ra is the 

isotopic ratio in air; all the values are normalized to the atmospheric composition; Table 1).  

 

Table 1 - Isotopic composition of helium and carbon (as TDIC) as well as 
4
He/

20
Ne ratios in the dissolved gases. n.a. 

= not analyzed; n.d = not determined; bdl: below detection limits.  

sample ID site ID Date Region R/Ra 4He/20Ne 13C TDIC

14/02 TR410 31/08/2014 Adapazari 0.64 24.31 n.a. 

14/03 TR411 31/08/2014 Adapazari 0.62 0.52 1.35 

14/14 TR415 03/09/2014 Balikesir 0.80 0.43 n.a. 

14/13 TR046 03/09/2014 Balikesir 0.88 0.3 -1.45 

13/06 TR389 04/09/2014 Balikesir 1.00 5.30 -0.85 

13/07 TR390 30/05/2013 Balıkesir 0.52 3.85 -5.02 

13/08 TR391 30/05/2013 Balıkesir 0.94 0.87 -2.02 

13/33 TR009 05/06/2013 Bolu 1.40 0.51 n.a. 

13/35 TR398 05/06/2013 Bolu 1.85 1.25 n.a. 

13/36 TR399 05/06/2013 Bolu 0.62 1.17 n.a. 

13/23 TR209 02/06/2013 Bursa 0.96 0.38 n.a. 

13/26 TR230 03/06/2013 Bursa 0.67 0.94 n.a. 

14/24 TR230 08/09/2014 Bursa 0.57 1.26 0.48 

14/16 TR232 04/09/2014 Bursa 0.90 49.72 3.52 
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13/09 TR233 30/05/2013 Bursa 1.12 0.43 0.48 

13/54 TR237 10/06/2013 Bursa 0.70 2.93 n.a. 

13/53 TR240 10/06/2013 Bursa 0.94 0.43 n.a. 

13/24 TR320 03/06/2013 Bursa 1.05 16.55 n.a. 

14/23 TR320 08/09/2014 Bursa 0.43 22.25 2.91 

13/11 TR322 30/05/2013 Bursa 1.18 0.41 -3.43 

14/18 TR322 04/09/2014 Bursa 0.53 1.90 -3.19 

13/19 TR361 02/06/2013 Bursa 0.85 0.42 -3.73 

13/10 TR392 30/05/2013 Bursa 1.14 0.35 -1.43 

14/17 TR392 03/06/2013 Bursa 0.94 0.35 n.a. 

13/50 TR407 10/06/2013 Bursa 0.78 0.49 n.a. 

14/19 TR416 05/09/2014 Bursa 0.84 1.19 2.84 

13/25 TR396 03/06/2013 Bursa 0.67 0.72 n.a. 

14/07 TR343 02/09/2014 Canakkale 0.87 18.22 -1.71 

13/04 TR352 02/09/2014 Canakkale 0.83 0.33 -14.39 

14/11 TR414 03/09/2014 Canakkale 0.46 2.59 -13.86 

13/45 TR379 08/06/2013 Eskisehir 0.86 0.36 n.a. 

13/46 TR403 09/06/2013 Eskisehir 0.94 0.36 n.a. 

13/47 TR404 09/06/2013 Eskisehir 0.91 0.44 n.a. 

13/01 TR357 01/09/2014 Ganos 0.75 0.31 -15.87 

14/04 TR412 01/09/2014 Ganos 4.41 2.75 -2.75 

14/01 TR225 31/08/2014 Istanbul 0.59 11.36 n.a. 

13/28 TR226 04/06/2013 Kocaeli 0.52 4.12 n.a. 

13/29 TR366 04/06/2013 Kocaeli 0.73 16.86 0.21 

13/37 TR400 05/06/2013 Sakarya 0.68 0.53 n.a. 

13/02 TR388 28/05/2013 Tekirdağ 2.07 0.43 n.a. 

14/05 TR388 28/05/2013 Tekirdağ 0.94 0.34 -17.47 

13/13 TR393 31/05/2013 Yalova 0.34 4.00 -6.47 

13/17 TR394 01/06/2013 Yalova 0.34 1.91 0.64 

13/12 TR215 31/05/2013 Yalova 0.87 0.29 1.52 

13/14 TR222 31/05/2013 Yalova 0.7 0.65 0.67 

 

 

Table 2 - Isotopic composition of helium, carbon (CO2 ) as well as  
4
He/

20
Ne ratios in the bubbling gases. n.a. = not 

analyzed; n.d = not determined; bdl: below detection limits.  

Sample ID Site ID Date Province R/Ra 4He/20Ne 13C CO2
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14/02 TR410 31/08/2014 Adapazari 0.63 345.91 -1.68 

14/03 TR411 31/08/2014 Adapazari 0.64 896.82 -3.81 

13/06 TR389 29/05/2013 Balıkesir 0.97 0.36 -17.23 

13/32 TR025 04/06/2013 Bolu 0.98 0.37 -3.3 

13/31 TR029 04/06/2013 Bolu 0.72 1 -4.2 

13/34 TR397 04/06/2013 Bolu 0.95 0.37 -1.8 

13/35 TR398 05/06/2013 Bolu 1.59 0.78 -5.2 

13/20 TR208 04/09/2014 Bursa 1.17 15.53 -6.18 

13/24 TR320 30/05/2013 Bursa 0.97 0.4 -5 

13/10 TR392 02/06/2013 Bursa 0.47 1.28 -9.4 

14/17 TR392 02/06/2013 Bursa 0.96 0.32 -14.35 

13/21 TR380 03/06/2013 Bursa n.a. n.a. -5.22 

13/51 TR408 10/06/2013 Bursa 0.52 30.77 -3.7 

13/52 TR409 10/06/2013 Bursa 0.52 10.08 -6.2 

14/07 TR343 02/09/2014 Canakkale 1.54 47.66 0 

13/04 TR352 29/05/2013 Çanakkale 0.18 24.79 n.a. 

13/03 TR353 29/05/2013 Çanakkale 0.2 40.14 n.a. 

14/10 TR413 29/05/2013 Çanakkale 0.18 4.44 n.a. 

13/46 TR403 08/06/2013 Eskisehir 0.71 0.72 n.a. 

13/47 TR404 08/06/2013 Eskisehir 0.66 23.65 -2.5 

13/38 TR037 05/06/2013 Sakarya 0.11 18.25 -6.1 

13/18 TR395 31/05/2013 Yalova 0.92 0.31 -1.6 

13/12 TR215 01/06/2013 Yalova 0.2 90.28 -2.7 

13/16 TR347 01/06/2013 Yalova 0.26 10.54 -1.1 

13/05 TR349 03/09/2014 Yenice 0.17 11.01 -4.5 

 

 

. 

The 4He/20Ne ratio indicates the extent of the atmospheric contamination (4He/20Ne in air = 0.318; in ASW 

= 0.267) while the helium isotopic ratio indicates the contribution from different sources marked by 

different 3He/4He ratios in terms of Ra values: air= 1Ra; crustal fluids = 0.05Ra; mantle (MORB-type) fluids 

= 8Ra. Figure 5 shows the isotopic composition of helium vs. the 4He/20Ne ratio. The curves on figure 5 

represent mixings between air and crustal or mantle fluids with different end-members (values in figure). 

The samples show basically a crustal origin with mantle contribution at variable extents. The values 

highlight a contribution of mantle-type fluids at all the monitoring stations making the monitored sited 

potentially useful to observe changes in the crust-mantle mixing ratios due to tectonic pulses. 
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Figure 5 - Isotopic composition of helium R/Ra ratio vs. the 

4
He/

20
Ne ratio of MARsite fluid monitoring sites.  

 

2 Fluids and crustal deformation 
Crustal deformation may affect the circulation of fluids inside the crust due to changes of the porosity and 

fracturation during stress accumulation and stress release that in turn modify the permeability of the 

rocks. 

Changes in the fluid circulation have been recorded during the MARsite project and they can be a 

consequence of periodical natural effects as seasonal rainfall or induced accidentally by human activities. 

Alternatively the changes can be a consequence of crustal deformation processes or, at least, of the 

ruptures in coincidence of seismic events. 

A preliminary data analysis was performed on 34 stations of geochemical continuous monitoring 

belonging to the Tubitak and ARNET networks installed around the Marmara Sea Region. The open source 

software “R” was used to perform the data analysis. The Crosscorrelation diagrams between temperature 

and conductivity and Autocorrelation diagrams of the temperature data show periodical patterns for 

many stations . Autocorrelation diagrams of the conductivity data don’t show any periodical patterns. The 

Classical Seasonal Decomposition (CSD) diagrams show various periodical patterns. Unfortunately they 

are too small (about 5 or 10 minutes) to be useful from a statistical point of view. Some stations show 

periodical patterns every 6 or 24 hours while patterns could be related to fault-fluid-stress relationships. 

An indication of the stress fields variation of could be suggested by the earthquakes (MW>3) occurred over 

or close to the Marmara Sea region (the strongest earthquake had Mw~5.7). The non periodical patterns 

could be due to the stress variation caused by seismic shocks. This hypothesis should be verified 

performing other studies.  

Examples are reported in figures 6, 7, 8. 
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Figure 6 – Autocorrelation analysis of temperature data at the EFPT station showing the absence of periodical 
changes  

 

 
Figure 7– Autocorrelation analysis of Radon decay  data at the GBZR  station showing the existence of very short 
periodical changes (15 minutes) 
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Figure 8– Cross correlation function at the BLKP station showing the existence of 4-24 hours periodical changes  

 

Table 3 - Crosscorrelation patterns between temperature and electrical conductivity and autocorrelation patterns 

of radon decay estimated for the Tubitak and Arnet monitoring stations showing the absence of periodical 

patterns as well as the presence of periodical, tidal like periodical changes 
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The behaviour of the fluids circulating in faulted areas is not directly related to the distance between the 

venting area and the epicentre. The coseismic crustal deformation postulated as to be assessable at any 

distance from the epicentral area by using the magnitude and the strain radius of the earthquakes 

(Dobrovolsky et al, 1979), as  = 100,43M (where  (km) is strain radius and M is magnitude), seems to fail 

with the evidence that some earthquakes occurring not far away from a venting area do not induce any 

change in the circulating fluids and, contrastingly, events with epicenters far away from the venting areas 

provoke significant and sometimes permanent effects. Probably the main reason is that the theoretical 

approach by Dobrovolsky does not take into consideration the physical structure of the natural system 

that includes ruptures, fractures, faults and rocks of different nature and porosity. All of those systems 

react in different ways to external stress and result in different deformation rates either in coincidence of 

seismic events and during slow stress accumulation. Moreover, the fluids follow preferential paths 

namely paths with higher permeability and porosity. In case of seismic events, that is in case of a rupture 

of a fault segment, sudden changes in the permeability may occur and they are able to drive fluids 

migration more effectively than crustal deformation. An example has been recorded within the MARsite 

project activity over the area of Bursa. There was no anomaly before the 22.10.2014, M=4.5 earthquake, 

which occured at 60 km to the east of the station. In contrast, there is a clear water temperature (wT) 

and water level (wL) increase before the 23.01.2015, M=4.5 earthquake, occurred at 80 km southwest to 
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the station. We noticed the release of pressured gas while opening the wellhead. Thus, tentatively we 

propose that the changes in terms of water level and temperature (figure 12) could be a consequence of 

the rupture of a fault segment. The following images show examples of changes recorded at some 

monitoring stations potentially due to the occurrence of seismic shocks located on various segments of 

the NAFZ, thus at variable distances from the site of observation. It is easy to observe the absence of a 

direct relationship distance-intensity of the effect, namely distance-amplitude of the crustal 

deformations-amplitude of the induced effects. 

 

 
Figure 9. Detailed graph of ARMP (Armutlu, Yalova) groundwater stations Potassium graph, data from monthly 
sampled and laboratory measured anion-cation analysis. There is a clear potassium increase-decrease before the 

24.05.2014, M=6.7 and 25.05.2014, M=5.5 earthquakes, which occur at 220-300 km west to the station. The clear 

anomaly can also be related to the nearer 03.02.2014, M=4.8 (80 km, southwest) or the very close 03.08.2014, 
M=4.1 (30km, east) earthquakes. It should also be noted that this station had given a very clear and several 
month long Sulfate anomaly before a suddenly appeared (November 2011) natural hydrogen sulfide rich gas 

discharge at the 5 km southeast located Mecidiye Village (unpublished observation by TUBITAK). 
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Figure 10 Detailed graph of TERP (Termal, Yalova) groundwater stations data. There is a electrical conductivity 

(EC) increase-decrease before the 24.05.2014, M=6.7 earthquakes, which occurred 300 km west to the station. 

But there seems no anomaly before the 03.07.2014, M=4.8 earthquake, which occurred 110 km southwest.  
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Figure 11 Detailed graph of TERP (Termal, Yalova) groundwater station data. There is a clear electrical 

conductivity (EC) increase-decrease before the 16.11.2015, M=4.1 earthquake, which occurred 40 km northwest 
to the station.  
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Figure 12- Detailed graph of SOE (Sölöz, Bursa) groundwater station data. No obvious anomalies were detected 

before the 22.10.2014, M=4.5 earthquake, which occur at 60 km east to the station. But, there is a clear water 
temperature (wT) increase-decrease and water level (wL) increase before the 23.01.2015, M=4.5 earthquake 

(marked with grey strip), which occurred at 80 km southwest to the station. During the station visit in 2015 a 
physical explanation for these positive temperature spikes emerged. There was a release of pressured gas while 
opening the wellhead. Thus, tentatively we propose that the rise of a giant gas bubble was responsible for the 
temperature spikes.  

3 Circulation model  
A possible circulation and interaction model can be proposed following Doglioni et al. (2014) who 

indicates the Brittle-Ductile-Transition (BDT) zone as the area that ideally separates two layers with 

different strain rates and structural styles. This behaviour determines a stress gradient that is eventually 

dissipated during the earthquake. The two layers also represent two fluid domains with different 

geochemical features. NAFZ-like strike-slip fault displays coexisting, locked and unlocked segments with 

opposite evolution (tension and shortening). During the interseismic period, they perform opposite 

evolutions (see a vs b on figure 13) inducing different behaviour in fluids circulation and changing both 

their geochemical features and flow rates.  

Before the rupture the proportion of mantle fluids is expected to increase within the dilated band (figure 

13, a) in contrast to an increased fluid expulsion over the shortened area. The contribution of mantle 

fluids over the same area might decrease during the coseismic period due to the enhancement of shallow 
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fluids expulsion induced by the sudden compression of the dilated band in figure 13, a due to the fault 

movement. The crustal relaxation of the brittle crust will result in an increase of the mantle fluids upraise 

over the newly formed dilated band (figure 13, b). Crustal deformation in dilating areas should be 

detectable by geodetic measurements.  

 

 
 

Figure 13– Schematic model of fluids circulation over segments of a seismogenic NAFZ-like strike-slip fault. Fluids 

of crustal and mantle origin mix in different proportions due to the different permeability in coincidence of areas 

undergoing dilatancy and compression as a function of their position to the respect of the locked fault planes. See 

text for details. Picture modified after Doglioni et al. (2014)  

 

4 Conclusions  

The results of the investigations carried out on the fluids vented over the area of the Sea of Marmara  in 

the mainframe of the MARsite project allow us to highlight the geochemical features of the collected 

fluids and to constrain some processes responsible for their chemical and isotopic composition, including 

processes of mixings, fractionation as well as processes related to the fault activity as crustal deformation 

and rupture. The evidence that fluids originated in different domains interact and mix, leads to the 

conclusion that, over the Marmara area, crustal fluids are available along with mantle volatiles. The 

different geochemical features of the collected fluids (in terms of chemical and isotopic composition) 

associated to the evidence of an active natural degassing is a possible indication that different segments 

of the NAFZ cut crustal sections marked by variable geological and physical features (e.g. different rock 

types and permeability values). The composition of the circulating fluids is determined by the local 

geology (e.g. the hosting rocks where groundwaters equilibrate or interact with gases); however, in the 

case of contributions of mantle fluids it is necessary that fractures or faults cut the whole crustal thickness 
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allowing the volatiles of mantle origin to rise up and mix with crustal and other shallow fluids. In this case 

the composition of the deep fluids is a matter of tectonics.  

As a matter of fact, since mantle degassing is not obvious in non-volcanic areas, we argue that high 

helium isotopic ratios and CO2 degassing indicate the presence of mantle volatiles ascent through 

lithospheric faults. Evidence that fluids with a variable - sometimes significant - mantle component are 

vented over the whole Marmara region implies a widespread lithospheric character of the various NAFZ 

branches supporting the possibility of detecting changes in the fault behaviour from temporal and spatial 

changes in the mixing proportion of the deep and shallow fluid components.  
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